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About me

Rising senior at UT Austin

Studying Math & Economics, with minors in Business and Data Science, interested in:

Measure theory & Probability theory

Econometrics & Mathematical Statistics

Microeconomic & Game theory

Representation theory

Analytic & Existential Philosophy

Previously: Wildfire Designs, texttobuy.xyz, Institute for Organizational Excellence,
Innovations for Peace & Development

Non-academic: Music, Table Tennis, Soccer

UNCLASSIFIED 3



UNCLASSIFIED x

Problem Statement

Consider a bivariate normal distribution. KFA has legacy code for visualizing the 90%
confidence region about the 1-σ ellipse.

Maximum Likelihood Estimation (MLE) is used to calculate the 1-σ ellipse and a Fisher
Information approximation is used to estimate the 90% confidence region.

Challenge: Current code is slow, want to see if results are reproducible.

Two approaches to find the 90% region:

1 Using Fisher Information

2 Using Wishart distribution (ongoing)
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Example of a bivariate normal distribution

mean(x) = 0 = mean(y), var(x) = 1 = var(y), cov(x , y) = 0.5

UNCLASSIFIED 5



UNCLASSIFIED x

Example of a 90% Confidence Region

We are interested in finding the region shaded in green, the 90% confidence region for the
1-σ ellipse.
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Overview of FIM Approach

In our assessment, for a bivariate normal distribution with independent and identically
distributed (IID) samples, we:

Estimated the MLE mean and covariances.

Analytically calculate the Fisher Information Matrix (FIM).

Calculate the asymptotic covariance matrix for the independent elements of the bivariate
covariance matrix.

Graph the 90% covariance ellipsoid and eliminate samples that violate the constraints on
the bivariate covariance matrix.

Graph the 90% confidence region about the 1-σ covariance ellipse.
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Mathematical Setup

Without loss of generality, set mean = 0 for both variables.

Dataset:

x ∶=

⎡
⎢
⎢
⎢
⎢
⎢
⎣

x1,a x1,b
⋮ ⋮

xn,a xn,b

⎤
⎥
⎥
⎥
⎥
⎥
⎦

,

assumed to be drawn from a bivariate normal distribution, i.e., x ∼ N(0,Σ).

MLE Covariance Matrix is assumed to be known and has values of:

Σ̂ = [
ŝ2a ŝab
ŝab ŝ2b

] ,

we are interested in estimating the uncertainty about this MLE covariance matrix.
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Setup

Likelihood and log-likelihood functions:

L = (2π)−n ⋅ ∣det(Σ̂)∣
− n

2 ⋅ exp
⎛

⎝
−
1

2

n

∑
j=1

xjΣ̂
−1xjT

⎞

⎠
,

ln(L) = −n ln(2π) −
n

2
ln(ŝ2a ŝ

2
b − ŝ

2
ab)

−
1

2

1

(ŝ2a ŝ
2
b − ŝ

2
ab)

n

∑
j=1
[ŝ2a (x

2
j ,b) + ŝ

2
b(x

2
j ,a) − ŝab(2xj ,axj ,b)] .

UNCLASSIFIED 9



UNCLASSIFIED x

Example visualization of log-likelihood function

var(x) = 1, var(y) = 1, cov(x , y) = 0.5
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Fisher Information Matrix (FIM)

The Fisher Information Matrix (I(Θ)) is the matrix containing entries

−E [
∂2

∂θi∂θj
lnL] ,

where θi , θj are the parameters (when we maximize log-likelihood). The observed FIM

(I(Θ̂ML)) is the FIM evaluated with the observed data, without the expectation.
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Cramér–Rao Lower Bound (CRLB)

CRLB describes the lowest variance for a biased estimator Θ. Namely,

Var(Θ̂ML) ≡ (
∂

∂Θ
E(Θ̂ML))

2

[I(Θ̂ML)]
−1

,

where I is the Fisher Information of the parameter. When Θ̂ML = Σ̂ML,

Var(Σ̂ML) ≡ (
n − 1

n
)
2

[I(Σ̂ML)]
−1

,

i.e., the inverse of the observed FIM is an estimator of the asymptotic covariance matrix.
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Visualizing the Asymptotic Covariance in 3-d space

Using the asymptotic covariance matrix, we can apply the Cholesky decomposition to generate
the 90% covariance ellipsoid. Namely,

1 Apply Cholesky decomposition:

Var(Θ̂ML) ≡ (
n − 1

n
)
2

[I(Θ̂ML)]
−1
= LLT ,

where L is a lower triangular matrix.

2 Randomly sample points on the surface of the unit sphere with center (ŝ2a , ŝab, ŝ
2
b).

Arrange them into a matrix P ∈M3×numpoints(R).

3 Transform P:
P↦

√
χ2
0.9,3LP.
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Validity Criteria

We need:

Each transformed point to form a positive-definite matrix:

(ŝ2a , ŝab, ŝ
2
b)

T
↦ [

ŝ2a ŝab
ŝab ŝ2b

] .

ŝ2a > 0, ŝ
2
b > 0

∣ρab ∣ < 1, where ρab =
ŝab√
ŝ2a ŝ

2
b

⇐⇒ ŝ2a ŝ
2
b − ŝ

2
ab > 0
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Valid Region

A sample is valid IFF it is in in the ‘carved out’ region. If it is in the ‘solid’ region, it is invalid.
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Visualization of 90% Covariance Ellipsoid

Valid samples in green, invalid samples in red.
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Visualization of 90% Covariance Ellipsoid
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Visualization of 90% Covariance Ellipsoid
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Plotting Ellipsoid on 2-d plane

For each valid point, we use it’s ‘devectorized’ form to plot the 90% region on the X -Y plane:
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Drawbacks of FIM Approach

A larger n (# samples used to calculate FIM) (⪆ 100) gives a more ‘stable’ asymptotic
covariance matrix and ellipses. We often do not have these many samples.

With smaller n, data may not be representative of population, so we may get inaccurate
results, such as above.

For smaller n, plotting artifacts such as polygons may appear.

But...
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Wishart Approach

The Wishart distribution is the distribution of sample covariance matrices for an IID sample
drawn from a multivariate normal distribution. For the p-variate case with d (≡ n − 1) degrees
of freedom, the probability density function (PDF) is:

f (X) =
1

2
dp
2 det(Σ̂)

d
2 Γp(

d
2 )

det(X)
d−p−1

2 ⋅ exp(−
1

2
tr(Σ̂−1X)) ,

where Γp is the p-variate gamma function defined as:

Γp (
d

2
) = π

p(p−1)
4

p

∏
j=1

Γ(
d

2
−
j − 1

2
) .

Goal: Find the 90% Highest Density Region (HDR) for the Wishart PDF, then plot samples
from the boundary of this region.
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Plotting Wishart Samples

The samples drawn from the Wishart distribution are 2 × 2 covariance matrices. We vectorize
these samples:

[
x z
z y

] ↦

⎡
⎢
⎢
⎢
⎢
⎢
⎣

x
y
z

⎤
⎥
⎥
⎥
⎥
⎥
⎦

∈ R3,

and plot them in 3-d. Lastly, we use a colorbar to indicate their PDF values.
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Plot of Wishart Samples
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Comparing FIM and Wishart Projections

For n = 10:
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Comparing FIM and Wishart Projections

For n = 50:
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Comparing FIM and Wishart Projections

For n = 200:
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Conclusion & Next Steps

Results:

The FIM approach, which we currently use, may not be appropriate for small sample sizes.

Using just the Wishart samples provides a tighter confidence region for the 1-σ ellipse, we
should be able to tighten it further by taking the 90% HPD (and thus finding a true 90%
confidence region).

Next steps: finding the boundary of the 90% HPD and plotting these points.

Identify integration technique and solve for bounds.

Sample points from boundary.

Plot these points.
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Thank you!
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(FIM Approach) Choosing the scaling factor

On slide 13, we applied the transformation:

P↦
√

χ2
0.9,3LP.

Why
√

χ2
0.9,3? The squared Mahalanobis distance D2 ∶= (x − µ)TΣ−1(x − µ) is equal to the

squared norm of the standardized random vector z = Σ−
1
2 (x − µ).

Given that z follows a standard normal distribution (i.e., z ∼ N(0, I)), the squared norm
∣∣z∣∣2(= D2) follows a chi-squared distribution with 3 degrees of freedom.

To find the 90% confidence region, we want to find c such that Pr(∣∣z∣∣2 ≤ c) = 0.9, which by
definition is χ2

0.9,3.
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